The Climatology of Vertical Mixing in the Tropical Tropopause Layer

Thomas Flannaghan and Stephan Fueglistaler Atmosphere Ocean Sciences/Geosciences, Princeton University

Vertical Mixing in the Tropical Tropopause Layer

Vertical mixing – Kelvin Helmholtz instability

- A shear instability
- ▶ Occurs when Richardson number *Ri* < 0.25

$$Ri = \frac{N^2}{|\partial \vec{u} / \partial z|^2}$$

A balance between static stability and vertical wind shear

Motivation

- ERA Interim diabatic budget is not fully explained by convection, clouds and radiation [Fueglistaler et al., 2009b]
- Points to significant diabatic forcing arising from vertical mixing
- Diabatic terms provide connection between Hadley cell and Brewer-Dobson circulation
- Also, observations show large strat-trop exchange of ozone across the TTL associated with vertical mixing [Fujiwara and Takahashi, 2001, Fujiwara, 2003]

The diabatic terms and vertical mixing in TTL are important

Vertical mixing parametrisations

- Vertical mixing cannot be resolved by GCMs
- Therefore, we parametrise vertical mixing
- Most schemes use a diffusivity approximation:

$$\rho \frac{\partial \phi}{\partial t} = \frac{\partial}{\partial z} \left(\rho \mathcal{K}(z) \frac{\partial \phi}{\partial z} \right)$$

- ϕ is generic quantity to be mixed:
 - Dry static energy when computing temperature tendency
 - Wind when computing momentum forcing
- Schemes typically give K as a function of u, v, T profiles

Two very different schemes

Most schemes define K as a function of Ri. These are two very different schemes:

Monin-Obukhov-type (MO) scheme has cut off at Ri = 0.25
Revised Louis (rL) scheme has long tail as Ri → ∞

Two very different schemes

- ▶ Monin-Obukhov-type (MO) scheme has cut off at *Ri* = 0.25
- Revised Louis (rL) scheme has long tail as $Ri \to \infty$

- ERA Interim using the rL scheme
- More recent ECMWF forecast models use MO scheme
- Other forecast models typically use schemes similar to MO scheme
- See Flannaghan and Fueglistaler [2011]

Two very different schemes

- Monin-Obukhov-type (MO) scheme has cut off at Ri = 0.25
- Revised Louis (rL) scheme has long tail as $Ri \to \infty$

- ERA Interim using the rL scheme
- More recent ECMWF forecast models use MO scheme
- Other forecast models typically use schemes similar to MO scheme
- See Flannaghan and Fueglistaler [2011]

We do not state which scheme is better: MO seems most physical but in absence of resolved gravity waves, is it a good idea to have *Ri* cut off at 0.25?

ERA Interim Climatology (rL scheme)

Exchange coefficient K climatology averaged over $\pm 10^{\circ}$:

K climatology at 104 hPa:

ERA Interim Climatology (rL scheme)

K climatology at 104 hPa averaged over $10^{\circ}N$ - $10^{\circ}S$:

Most mixing in regions of high shear

ERA Interim Climatology (rL scheme)

What do K results mean for diabatic forcing?

ERA Interim Climatology using MO scheme

What happens to K if we apply MO scheme to ERA Interim data?

- Very high values in DJF Western Pacific (around 180°)
- Low values over Indian Ocean (where rL scheme mixed most)
- Average K similar a tuning parameter was used

ERA Interim Climatology using MO scheme

K climatology at 104 hPa averaged over $10^{\circ}N-10^{\circ}S$:

- Most mixing in regions of low N^2 (contours are N^2)
- No contribution from regions of high shear

ERA Interim Climatology using MO scheme

What effect does this have on diabatic terms?

- MO scheme mixes in regions where background stability very low
- ► ⇒ average temperature tendency is much smaller
- MO scheme mixes in regions where background wind shear very low
- ► ⇒ average zonal acceleration is much smaller

Modelling the Impact of Diabatic Terms

- We have seen that there are significant diabatic terms caused by mixing in ERA Interim
- Diabatic terms very sensitive to scheme
- Therefore, could cause significant bias to ERA Interim

Here we model the response to these diabatic terms to get estimate of potential impact

Model

- Held and Suarez [1994] forcing
- Horizontal resolution is T42
- ▶ 800 m vertical resolution in TTL (60 levels)
- ► 4000 day spin-up (unforced) then 4000 day forced run
- Idealised forcing of form

$$A\cos^2\left(\frac{\pi x}{L_x}\right)\cos^2\left(\frac{\pi y}{L_y}\right)\sin\left(\frac{\pi(z_0-z)}{L_z}\right),$$

where $|x| < \textit{L}_x$, $|y| < \textit{L}_y$ and $|z| < \textit{L}_z$

Model

- Held and Suarez [1994] forcing
- Horizontal resolution is T42
- ▶ 800 m vertical resolution in TTL (60 levels)
- ▶ 4000 day spin-up (unforced) then 4000 day forced run
- Idealised forcing of form

$$A\cos^2\left(\frac{\pi x}{L_x}\right)\cos^2\left(\frac{\pi y}{L_y}\right)\sin\left(\frac{\pi(z_0-z)}{L_z}\right),$$

where $|x| < \textit{L}_x$, $|y| < \textit{L}_y$ and $|z| < \textit{L}_z$

- L_x 20°longitude
- L_y | 10° latitude
- L_z 0.5 scale heights \approx 3 km
- z_0 2.2 scale heights

Results

- Temperature tendency term only
- Amplitude $A = 0.5 \text{ K day}^{-1}$
- Response of order 1.5 K, 3 m s⁻¹

- Zonal acceleration term only
- Amplitude $A = 2 \text{ m s}^{-1} \text{ day}^{-1}$
- Response of order 3 K, 8 m s⁻¹
- Very zonally symmetric
- Results similar in nature to Shaw and Boos [2012]

Results

- Both diabatic terms
- > Zonal Acc. 2 $m s^{-1} day^{-1}$
- ▶ Temp. Tend. 0.5 K day⁻¹
- ▶ Response of order 4 K, 8 m s⁻¹
- Dominated by zonal acceleration forcing
- Solution is very similar to linear combination of separate solutions

This result is a significant cooling of 4 K at around 90 hPa

- Results similar in nature to Shaw and Boos [2012]
- Response confined to inner tropics $\sim \pm 15^{\circ}$ latitude

Analysis

- These results are consistent with balance between radiative cooling and the diabatic forcing
- $\blacktriangleright \implies$ magnitude of response prop. to radiative timescale τ
- $\tau = 40$ days in the Held-Suarez model
- ▶ But radiative transfer model applied to temperature response gives $\tau \approx 10$ days to 15 days
- This suggests real magnitude of response of order 1 K, 2 m s^{-1}
- ... but this is still a significant cooling at the tropopause

Bias in TTL in ERA Interim

- ERA Interim is consistently cold when compared to COSMIC and CHAMP at 95 hPa
- 0.8 K too cold vs. CHAMP
- 0.4 K too cold vs. COSMIC
- COSMIC assimilated reduces error

Summary

- Vertical mixing gives rise to significant diabatic terms in ERA Interim
- Terms are localised and seasonally varying
- Other mixing schemes (i.e. MO) give rise to much smaller diabatic terms – therefore somewhat uncertain
- Modelling suggests that diabatic terms arrising from mixing in ERA Interim can make order 1 K difference around 90 hPa
- Could account for difference between ERA Interim and COSMIC

Thanks for listening!